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ANNUAL ITE= SCIENIFMC TECHNICAL RPOR

Grant:
AFOSR-83-0150, Algebra Institute, University of California, Santa Barbara.

Santa Barbara, California 93106

m~te:
Stability analysis of finite difference schemes for hyperbolic systems, and
problems in applied and computational linear algebra

Pinod:

May 1, 1983 - April 30, 1984
Principal Investigators: Moshe Goldberg, Marvin Marcus

(Numbered items refer to format specified by AFOSR for Annual Technical
Reports)

1. S47nmary:

The research is concerned with two principal related areas. Stability

analysis of finite difference schemes for hyperbolic initial-boundary value prob-

lems lead to an investigation of bounds for matrix norms and condition

numbers. The aim of this research is to provide a better understanding of tools

used in the numerical analysis of such hyperbolic systems. Approximation 5

schemes lead to systems of linear algebraic equations and the stability of such

schemes depends on the eigenvalues and singular values of the associated

matrices. Thus, in certain aspects, the analysis of a finite difference scheme is a 0

problem in numerical linear algebra. Eigenvalue localization and inequalities for

matrix norms are two pertinent areas of classical research in this field. The

investigators have used methods from convex analysis, the theory of inequali- q

ties, classical linear and multi-linear algebra and numerical range theory in

attacking these problems. This project should contribute to better understand-

ing of advanced computational techniques, and to the improvement of basic

mathematical tools often used in numerical analysis and other fields of applied

mathematics.

__* 4
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2.3. Research objectives and status of research

The research completed by Moshe Goldberg under Air Force Grant AFOSR-

83-0150 during May 1983 - April 1984. consists of the following two topics:

1. Conrenien StabilJ Criteria for Difference Schemes of Hyperbolic Initial-
Bmmndrw Vue Problems

Consider the first order system of hyperbolic partial differential equations

Ou(x,t)/Ot =A~u(x,t)/Oz + Hu(xt) + $(xft), z -O, t 0,

where u(z,t) is the unknown vector; A a hermitian matrix of the form

A = A, ( A2, where A, is negative definite and A2 is positive definite; and f (z,t)

is a given vector. The problem is well posed in L2 (0,-) if initial values

u(Zt) = u0 (z) E Lz(0.'), z k 0.

and boundary conditions

u1(0-t) = SU2(0.t) + g(t), t k 0,

are prescribed. Here, ul and u2 are the inflow and outflow parts of u

corresponding to the partition of A, and S is a coupling matrix.

In the past year, E. Tadmor and M. Goldberg, [16], have succeeded in

obtaining new, easily checkable stability criteria for a wide class of finite

difference approximations for the above initial-boundary value problem. The

difference approximations consist of a general difference scheme -- explicit or

implicit, dissipative or not, two-level or multi-level - and boundary conditions of

a rather general type.

Attention is restricted to the case where the outflow boundary conditions

are translatory, i.e., determined at all boundary points by the same coefficients.
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This, however, is not a severe limitation since such boundary conditions are -

commonly used in practice. In particular, when the numerical boundary con-

sists of a single point, the boundary conditions are translatory by definition.

Throughout the paper [16] it is assumed that the basic scheme is stable for

the pure Cauchy problem, and that the assumptions which guarantee the vali-

dity of the stability theory of Gustafsson, Kreiss and Sundstrom [18] hold. With

this in mind the question of stability for the entire difference approximation is

raised.

The first step in the stability analysis was to prove that the approximation is

stable if and only if the scalar outflow components of its principal parts are

stable. This reduces the global stability question to that of a scalar homogene-

ous outflow problem of the form

8u/8t = aftu/8z, a = constant> 0, z !, t 0

U(X.0) = UO(), 2 >O ; U(O't) =O, t t .

The stability criteria obtained in [18] for the reduced problem depend both

on the basic difference scheme and on the boundary conditions, but very little

on the interaction between the two. Such criteria eliminate the need to analyze

the intricate and often complicated interaction between the basic scheme and

the boundary conditions, hence providing in many cases convenient alternatives

to the well known stability criteria of Kreiss [22], and of Gustafsson, Kreiss and

Sundstrom [18]. It should be pointed out that the old scheme-independent sta-

bility criteria in [ 13,14] easily follow from the present criteria in [ 18].

Having the new criteria in [16], all the examples in the previous papers

[13,14] were reestablished. For instance, if the basic scheme is arbitrary (dissi-

pative or not) and the boundary conditions are generated by either the explicit



-5-

or implicit right-sided Euler schemes, then overall stability is assured. For dis- -

sipative basic schemes stability is proved if the boundary conditions are deter-

mined by either oblique extrapolation, the Box-scheme, or by the right-sided

weighted Euler scheme. These and other examples incorporate most of the

cases discussed in recent literature [2], [3]. [13]. [14]. [18]. [19]. [21]. [23], [27].

[30-35]. [37).

Some new examples appear in [16] as well. Among these it is found that if

the basic scheme is arbitrary and two-level, then horizontal extrapolation at the

boundary maintains overall stability. Other stable cases occur when the basic

scheme is given by either the backward (implicit) Euler scheme or by the

Crank-Nicolson scheme, and the boundary conditions are determined by oblique

extrapolation. Such examples, where neither the basic scheme nor the boun-

dary conditions are necessarily dissipative, could not have been handled by the

previous results in [13,14].

An extended version of [16]. which includes additional examples and

remarks, is now in final stages of preparation, [17].

Such contributions should be helpful to applied mathematicians and

engineers in better understanding and exploiting old and new finite difference

approximations to hyperbolic systems.

2. 9ubrhtiplicativity and Other Properties of lp Norms for Matrices

In the past three years, E. G. Straus (now deceased) and M. Goldberg, [9,10],

investigated submultiplicativity properties of norms and seminorms on operator

algebras - an important subject in many fields of numerical analysis and applied

mathematics. In this work an arbitrary normed vector space V over the com-

plex field C, with an algebra L(V) are studied. If N is positive definite, i.e.,



N(A) > 0 for all A it 0. then N is called a generalized operator norm. If in addi-

tion. N is (sub-) multiplicative, namely N(AB) ! N(A)N(B) for all A. B E L(V),

then N is called an operator norm on L( V).

Given a seminorm N on L(V) and a fixed constant A > 0, then obviously

N a AN is a serninorm too. Similarly, N. is a generalized opera'tor norm if and

only if N is. In both cases. N, may or may not be multiplicative. If it is, then z

is said to be a multiplicativity factor for N.

Having these definitions the following is proved in [9]:

(i) If N is a nontrivial seminorm or a generalized operator norm on L (V). then

N has multiplicativity factors if and only if

AN = su2pN(AB): N(A) = N(B) = 11 <.

(ii) If uN < -. then M is a multiplicativity factor for N if and only if A ! AN.

Special attention was given to the finite dimensional case where it suffices,

of course, to consider Cnx , , the algebra of nxn complex matrices. Following

Ostrowski, [28]. in this case the terms generalized matrix norm and matrix

norm are adopted instead of generalized operator norm and operator norm.

respectively. In this case it is proved that while nontrivial, indefinite seminorms

on Cnx never have multiplicativity factors, generalized matrix norms always

have such factors. In the infinite dimensional case. however, the situation was

less decisive. i.e.. there exist nontrivial indefinite seminorms and generalized

operator norms on L(V) which may or may not have multiplicativity factors.

In both the finite and infinite-dimensional cases it is proved that if M and N

are seminorms on L(V) such that M is multiplicative, and if 77 > > 0 are con-

stants satisfying

CM(A) < N(A) < iM(A) for all A E L(V),

I
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then any I with A > 17/ is a multiplicativity factor for N.

Using these results it is proved, for example, that if V is an arbitrary Hil-

bert space and

r(A) =sup I(,4=z) I :z E: V, I z I= 1j. A EL(V),

is the classical numerical radius, then /ur is an operator norm if and only if

A i 4. This assertion is of interest since the numerical radius r is perhaps the

best known nonmultiplicative generalized operator norm [1.4.15,20.29], and it

plays an important role in stability analysis of finite difference schemes for

multi-space-dimensional hyperbolic initial-value problems [15,24.25,36].

Straus and Goldberg also investigated C-numerical radii which constitute a

generalization of the classical numerical radius r, defined in [7] as follows: For

given matrices A. C E Gx., the C-numerical radius of A is

rc(A) = maxi Itr(CU*AU)I : U nxn unitaryi.

In [7] (compare [26]), it is shown that r is a norm on Cnx. -- and so has multipli-

cativity factors -- if and only if C is not a scalar matrix and tr C 0 0. Multiplica-

tivity factors for the above rc were found in [7-10.12].

In the most recent effort, Straus and Goldberg. [11]. studied the well known

IF norms

jAj,= qaqP'-P A=(aqj) E 1-_p-_4-

It was shown by Ostrowski, [28], that these norms are multiplicative if and only if

1 s p ! 2. For p ! 2 it is shown that A is a multiplicativity factor for ) A I p if and

only if As n 2-gP; thus. in particular, obtaining the useful result that

n --1P IA IP is a multiplicative norm on Cnx, .
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Continuing this effort. Goldberg obtained [5.6] the best possible constants

IA(p,q) and A(q.p) (for arbitrary 1 ! p.q i -) such that relations of the form

JA jp!9(p.q)j IpjeI . JAHjp!91(qp)jAjqjBjp .

hold whenever the matrix product AB exists. This leads to the best possible con-

stant X(p , q) for which

IIA16, -_ X, q)lIAI q, A E: C,,xn, (ltcP,9 !9 .)

where

IIAl6 = ma lAxlp :x E C, Ixlp = i

is the ordinary 1p operator norm of an arbitrary mxn matrix A. Such inequali-

ties could be useful in determining the power boundedness of a matrix -- a basic

question in stability analysis.

The research of Marvin Marcus under Air Force Grant AFOSR-83-0150 during

May 1983 -- April 1984 is described below.

In the mathematical modelling of physical phenomena, a standard tech-

nique for solving the resulting partial diffferential equation boundary value prob-

lem is to approximate the differential system at a discrete set of points by the

solution of a linear system. In general, such a system is large, non-symmetric

and sparse. The Tchebychev iteration based on Tchebychev polynomials can be

used to solve non-symmetric linear systems whose eigenvalues lie in the right

half-plane. Moreover, many factorizations and splitting techniques applied to

symmetric systems yield non-symmetric systems with spectra in the right-half

plane. Manteuffel [Numer. Math. 28, 307-327. 1977] showed that the Tchebychev

iteration for an N-square real linear system

*
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Am b

whose eigenvalues lie in the right-half plane, can be carried out with two param-

eters, cd which arise in evaluating T,(dfc) where T(z) = cosh(ncosh-'(z)) is

the nt Tchebychev polynomial.

Manteuffel proved that if the convex hull, H(A), of the spectrum of A is

known (for normal matrices this is the numerical range of A ), then the parame-

ters c ,d in the above iteration can be chosen to be optimal in a minimax sense.

In a later paper [Numer. Math. 31, 183-208, 1978] he discusses a method of

estimating H(A) during iteration from the sequence of residual vectors. He also

shows that a power method variant of the Tchebychev procedure yields eigen-

value estimates that lie in the numerical range F(A). B. A. Carrb, L A.

Hagemann, R. B. Kellog, and others, have also done work on dynamic estimation

of the optimal SOR parameter.

At the 30th Anniversary Meeting of the Society for Industrial & Applied

Mathematics in 1982, (supported in part by a grant from the Air Force Office of

Scientific Research), Dr. Martin Schultz of the Yale University Department of

Computer Science posed the following general question stemming from the work

of Manteuffel and its continuation by the Yale group.

Obtain computational estimates of the set H(A) and the field of values (i.e.,

numerical range) F(A).

In work currently underway by M. Marcus and M. Sandy, computer codes

have been developed for obtaining explicit numerical plots of H(A)cF(A) that

are useful in determining the optimal c d described above. Work is also in pro-

gress to obtain computable bounds on the discrepancy between F(A) and H(A).

This discrepancy problem has been considered earlier in various forms by many

authors: H. Wielandt, B. N. Moyls. I. Filippenko, B. Shure, M. Sandy, K Fan, C. A.

Berger, M. Newman, R. C. Thompson, P. R. Halmos.

-- nl i i i il i U I II ll | l | li i Idi I • | - " " i | .. . . .
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Another of the areas of rescarch under this grant is concerned with the

condition number K(A) of a matrix A, defined by

.c(A) = 1JAIl IAJ-'l.

which plays an important role in error estimates and termination criteria for

numerical iterative methods for the solution of linear systems. More

specifically, the following problem was examined in publication #2 listed under

Publications below.

How does the condition number K(A.B) of the Hadamard product

A-B =[ buj

of two matrices A = [a1] and B =by] , depend on the norms, singular

values, etc. of the factors A and B?

In particular, work appearing in the preceding publication investigates this

and related problems for the class of von Neumann norms. Recall that a von

Neumann norm, f!Xjj, also called a unitarily invariant norm, satis.ies

j1UXV1I = 1IlXI

for all unitary matrices U and V. von Neumann's theorem states that if

a, a,. are the singular values of X, then HJXII can be written as

IIXII = aa , O.)

where rp is a symmetric gauge function. Note that the usual !- norms arise

from gauge functions:

(z.... . )= max [ ,zQ(%)IP sUP



where k is a fixed integer, 1 k : n. and p > 1. e.g., if k 1 and p =1 then 0 spe-

cializes to the Hilbert norm or maximum singular value of X

In the preceding formula 1IzH1 is the usual Euclidean norm. In other words,

V zn) = max IZ.( i  S

which obviously satisfies the definition of a symmetric gauge function.

It is worthwhile to note that there exists a simple connection between the

condition number x(A) and the Hadamard product. It is proved in publication

#2 listed below, that for the Hilbert norm the following inequality is available:

1IA.BW At -8 " S

In case B = A then

IIA'A- 1I ! flAI" IIA- 111.

Thus for the usual matrix norm subordinate to the Euclidean vector norm

K(A) IIAA'- l.

It follows easily that

x(A) > L

where L is the largest product

L =max Ia bij

and B = A- '. Hence, in particular, if a lower bound for the modulus of a single

element of A - is available, say I 6 t0 0
1 b L0. then

. .. . .. • I . . . . ... .. . .. . I IIIII I I 1 I . . . . . . . . . . . . . . . .
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x(A) >! I aol Lo.

These preliminary results suggest a number of possible areas of investiga-

tion which are currently underway:

Investigate the inequality

I1-B II < IL11 IBII

for the class of von Neumann norms and obtain easily computable lower

bounds on the corresponding condition numbers.

For the linear system Am = b these considerations show that the estimated rela-

tive error in z can be as large as

1 A-A-AIl (a + #),1 0- -A-111

where a and P are the relative errors in A and b respectively.
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Moshe Goldberg

1. On the mapping A-.A*. Linear and Multilinear Algebra 12 (1983). 285-289.

2. Combinatorial inequalities, matrix norms, and generalized numerical radii.

II (with E. G. Straus), in "General Inequalities 3", edited by E. F. Beckenbach

and W. Walter, Birkhauser Verlag, Basel, 1983. 195-204.

3. Multiplicativity of / norms for matrices (with E. G. Straus), Linear Algebra

and Its Applications 52 (1983), 351-360.

4. Multiplicativity factors for C-numerical radii (with E. G. Straus), Linear Alge-

bra and Its Applications 54 (1983). 1-18.

5. On generalizations of the Perron-Frobenius Theorem (with E. G. Straus),

Linear and Multilinear Algebra 14 (1983). 143-156.

6. New stability criteria for difference approximations of hyperbolic initial-

boundary value problems (with E. Tadmor), in "Lectures in Applied

Mathematics Vol. 22," American Mathematical Society, accepted.

7. Multiplicativity of Lp norms for matrices. I, Linear Algebra and Its Applica-

tions, accepted.

8. Some inequalities for LP norms of matrices, in "General Inequalities 4",

edited by W. Walter, Birkhauser-Verlag, Basel, accepted.

9. In Memoriam Edwin F. Beckenbach, in "General Inequalities 4", edited by W.

Walter, Birkhauser-Verlag, Basel, accepted.

10. Convenient stability criteria for difference approximations of hyperbolic

.... ... .. . .. . ... .... ... . . ... . . .... ... ..
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9 initial-boundary value problems (with E. Tadmor). Mathematics of Computa-

tion, accepted.
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5. List of Professiona PbrsonneL, Advanced Degrees

Marvin Marcus, Professor of Mathematics and Computer Science, University

of California, Santa Barbara.

Moshe Goldberg, Professor of Mathematics, Technion, Israel Institute of

Technology.

Kent Kidman, awarded Ph.D, Fall 1983, currently working for Hughes

Aerospace, Tactical software division. El Segundo, CA. thesis title: Stochas-

tic Matrices and Unitarily Invariant Norms.

Markus Sandy, Research Assistant, graduate student in Department of

Mathematics.

Interactions.

- M. Sandy represented the investigators on this grant at AFOSR Conference

on supercomputing, Air Force Weapons Laboratory, April 3-6, 1984.

- M. Marcus invited to speak at Mathematics Department Seminar, Univer-

sity of California, San Diego. May 22. 1984.

- M. Marcus invited March 3. 1984 to American Math. Soc. Joint Summer

Research Conference at Bowdoin College, on Linear Algebra and Systems

Theory.

- M. Goldberg invited speaker, (two talks), the Fourth International Confer-

ence on General Inequalities, Mathematical Research institute, Oberwolfach,

West Germany. May 1983.

- M. Goldberg invited speaker, the Fifteenth AMS-SIAM (American Mathemat-

ical Society and Society for Industrial and Applied Mathematics) Summer

Seminar on Large-Scale Computations in Fluid Mechanics. Scripps Institute

Woolson
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of Oceanography. University of California. San Diego, La Jolla. California,

June-July 1983.
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